

GROUND VIBRATION FREQUENCY CONTROL

Adrian J Moore Alan B Richards

Terrock Pty Ltd

Why is Frequency Important?

Main Importance is Assessing Damage Potential

Eg. - USBM Frequency Dependant Damage Criteria

Figure J4.4.2.2 – USBM 'Safe' blasting Vibration Level Criteria

Oriard (2002) states "it is more difficult to develop a formatted method for calculating or predicting frequency over a large distance or from one geological setting to another, although general trends are well known".

Factors influencing ground frequency are:

•Natural frequency and frequency transmission characteristics of the ground;

Reduction of frequency with distance;

•Forcing frequencies from the initiation sequence;

•Modification of the forcing frequency by a Doppler effect because of the moving source; and

•Sub harmonic split of the forcing frequency

Natural Ground Transmission Frequency

Dominant Frequency of single hole Test Blast vs Distance

Forcing Frequencies

Timing Delay (ms)	Forcing Frequency (hz)	Sub harmonics (hz)			
		1	2	3	4
9	111	55.5	27.8	13.9	6.9
17	58.8	29.4	14.7	7.4	3.7
25	40	20	10	5	
42	24.4	12.2	6.1		
67	14.9	7.5			
100	10	5			
109	9.2	4.6			

Doppler Effect

Consider the following:

Single Row of Blastholes 5 m apart fired 50 ms apart

In the perpendicular direction the frequency generated is 20 hz.

In the direction of initiation the frequency is increased because of the 5 m separation between blastholes. The travel time of the ground vibration depends on the wave velocity.

Pwave Velocity 2 m/ms TP = 2.5 ms Swave Velocity 1.2 m/ms TS = 4.2 ms Rwave Velocity 0.7 m/ms TR = 7.1 ms The resulting frequencies can be represented by a frequency ellipsoid

The forcing frequencies are 21.0 - 23.3 hz in the initiation direction The forcing frequencies are 17.6 - 19.1 hz in the opposite direction The forcing frequencies in other directions can be scaled off the ellipsoid

Sub Harmonic Split

From our observations of coal overburden blasts, the forcing frequency reduces by sub harmonic splits with distance – as a distinctive halving rather than gradual reduction

Example 1 Consider the frequency ellipsoids for a 50 ms control row; with a 75 ms echelon row. In the direction shown, the following FFT was recorded at about 600 m.

It can be seen that the control row forcing frequencies (16 - 20 hz) exist in a broad band:

- The echelon row forcing frequencies exist in a broad band
- The most energy is in the sub harmonics of the echelon row

Example 2 Consider the frequency ellipsoids for a 50 ms control row with a 60 ms echelon row. The combination FFT at 100 m is as follows. There are 2 dominant frequencies of about 18 and 19 hz.

The PPV wave trace (transverse channel)

The two closely aligned frequencies resulting in the direction shown formed 'beats' which elevated the PPV from a predicted 17.9 mm/s to 28.5 mm/s.

Time (s)

In Summary, Frequency control is not simple. All the general trends we are beginning to understand are thrown out the window when a clay layer is involved.

Consider the wave trace recorded at about 800 mm from a blast in basalt overlaying a layer of lacustrine sand and clay.

