Fragmentation Assessment using 3D imaging

Associate Professor Matthew Thurley <u>matthew.thurley@imv.net.au</u>

No part of this presentation can be used without permission and acknowledgement (see the banner below)

Vision for the Future

- Automated, online fragmentation measurement systems (no manual particle delineation required)
- Consistent, repeatable measurement
- Big data to make robust decisions (statistically significant)
- Feedback to blasting and caving
- Automatic control of mineral processes
- Integrated automated control strategies from mine to mill

Innovative Machine Vision

Fragmentation measurement products and services based on 3D imaging

- On conveyor belt: commercial system available from Swedish firm MBV-Systems and distributed globally within mining by ABB.
 Innovative Machine Vision licences the fragmentation software library
- 2. For piles of blasted rock: Fragmentation assessment as a service based on 3D imaging from survey grade laser scanners
 - The mine survey team collects the 3D data based on an agreed methodology
 - IMV performs automated analysis of the data so that you get a consistent, repeatable analysis

3D Data

Conveyor belt

Laser triangulation

Pnv

3D Data

Muckpile

Laser scanner

Advantages of good 3D data and smart algorithms

High resolution 3D imaging and IMV's advanced algorithms

- Overcomes limitations of 2D imaging
 - Good automatic particle delineation, avoids errors due to color variation in the rocks
 - Directly measure 3D dimension of the material therefore no scaling objects or perspecive distortion errors
- Detect overlapped particles preventing error from mis-sizing as smaller particles
- Detect areas-of-fines preventing error from mis-sizing as large boulders
- These two errors are opposing in their effect, which in combination can produce an unstable system. Mitigating these errors results in a stable and reliable measurement system.

Key Distinctions

- This is an image based system so the visible surface of the rock piles is measured
- Not the same as sieving or screening
- Does not require "calibration" to sieving (or ongoing-recalibration) because the measured results are a realistic representation of the visible rocks
- Automated analysis requires no manual delineation of particles
- Detects areas of visible fines in a realistic way
- Measurements provide a useful comparative measure of fragmentation

3 Examples

Open-Pit Muckpiles

Onederra, I, Thurley, M & Catalan, A 2015, 'Measuring blast fragmentation at Esperanza mine using high resolution 3D laser scanning' *Institute of Materials, Minerals and Mining. Transactions. Section A: Mining Technology*, vol 124, no. 1, pp. 34-46.

Pnv

Open Pit Muckpile Measurement

- Survey team collects data based on an agreed methodology
- Scans the muckpile periodically during excavation
- We perform automated fragmentation analysis

Fragmentation Assessment in a large Open Pit (Esperanza Mine - Chile)

innovative machine vision pty ltd www.imv.net.au

õ

3 Blasts with 55 scans

Combined Sizing Results for Blast 1 10 scans Blast 2 30 scans Blast 3 15 scans

Open Pit Muckpile : 3D rock pile data

bench of compressed fines at the top

Complete Particle Delineation : Set A - · - · -

Open Pit Size Distributions

Open Pit Size Distributions

innovative machine vision pty ltd www.imv.net.au

setA set B

set C

700

600

400

500

300

Open Pit Size Distributions

Underground Drawpoints

Drawpoints Example

- Project with Alex Campbell at Ernest Henry Mining
- Fragmentation study using a Riegl laser scanner mounted in the back of a ute
- 3D measurements performed approximately every 500 tonnes, taking several hundred measurements
- Following example shows the analysis images for 2 drawpoints and a size graph for the batch of 14 measurements

Drawpoint example 250t

Automatically detected non-overlapped rocks (left image – shown in various colors) and areas-of-fines (right image – shown in various colors) Many smaller rocks and large area-of-fines well detected

Drawpoint example 3500t

Automatically detected non-overlapped rocks (left image – shown in various colors) and areas-of-fines (right image) Mostly larger rocks and no areas-of-fines present and non detected

Drawpoint od9_r38 (Area)

Size results 1 ring of 14 drawpoints

250t shown in solid purple line

3500t shown in solid pink line

Sieve Size Class (mm)

Size results 10 Rings

Ring 9.7 : 15 scans Ring 9.8:15 scans Ring 9.9:13 scans Ring 9.0 : 10 scans Ring 1.4 : 6 scans Ring 1.6 : 13 scans Ring 1.7 : 15 scans Ring 1.8 : 16 scans Ring 1.9 : 15 scans Ring 1.0 : 9 scans

Total 127 scans

Sieve Size Class (mm)

Comparison of Rings (Area)

Conveyor Belt

Boliden Tara Mine: between primary crusher and grinding mill (2011 ongoing)

Crusher Size Distributions

Sieve Size Class (mm)

Crusher Size Distributions

Sieve Size Class (mm)

Crusher Size Distributions

Sieve Size Class (mm)

Compare with smart algorithms ON and OFF?

- What would the results be if we could not;
 - Detect areas-of-fines and
 - Detect and ignore overlapped particles
- But still had high quality 3D image data that overcomes limitations of 2D systems
 - Overcomes particle delineation errors from particle color variation and lighting variation
 - Directly measures material dimensions

Results for 500 measurements over 4+ hours 0-250mm

Cumulative Size Distribution 2012–02–20

Results for 500 measurements over 4+ hours 0-250mm BUT Detection of fines and overlapped is OFF

Cumulative Size Distribution, No Detection Fines/Overlapped, 2012-02-20

Measurement Number During the Day

Results for 500 measurements over 4+ hours 0-250mm BUT Detection of fines and overlapped is OFF

Cumulative Size Distribution , No Detection Fines/Overlapped, 2012–02–20

Summary

Particle Size Range

Application Example	Measured Size Range
Open-Pit	Fines < 80mm, Largest approx. 2000mm
Drawpoints	Fines < 25mm, Largest approx. 1500mm
Conveyor after primary crusher	Fines < 10mm, Largest approx. 500mm
Conveyor agglomeration circuit	Fines < 3mm, Largest approx. 50mm

Advantages of good 3D data and smart algorithms

High resolution 3D imaging and IMV's advanced algorithms

- Overcomes limitations of 2D imaging
 - Good automatic particle delineation, avoids errors due to color variation in the rocks
 - Directly measure 3D dimension of the material therefore no scaling objects or perspecive distortion errors
- Detect overlapped particles preventing error from mis-sizing as smaller particles
- Detect areas-of-fines preventing error from mis-sizing as large boulders
- These two errors are opposing in their effect, which in combination can produce an unstable system. Mitigating these errors results in a stable and reliable measurement system.

Thank You

Associate Professor Matthew Thurley <u>matthew.thurley@imv.net.au</u>

No part of this presentation can be used without permission and acknowledgement (see the banner below)

Automated sizing in LHD buckets

- 3D data from cheap industrial 3D laser scanners
- Fully automated analysis
- Estimated the sieve size of the visible fragments

pass53

📓 lms400p.m3d

-1.1e+003

ZMAX

ZMIN -3.92e+003

Ims200_set0.c3d