

# **Controlling Blast Related Fume with Modified Explosives**



J. Rock – Technical Specialist, Hanwha Mining Services

K. Bambrook – Drill & Blast Engineer, Glencore Coal Assets Australia, Clermont Mine





- Glencore proactively seeking alternatives to lower the risk of blast generated fume
- As with many sites, Clermont Coal Mine has weathered tertiary material that has a high risk of fume
- Increase in industry focus on fume from blasting
- Conventional Bulk Products impose restrictions to reduce risk of fume
- > This in turn impacts on downstream processes





GLEN

- Caused by fuel deficiency or low order detonation
- Can be caused by individual or multiple factors:
  - Explosive formulation & quality control
  - Geology
  - Blast Design
  - Product selection & Implementation

In certain conditions, blast fume could cause minor visual impact through to serious health issues and negative media

# **Blast Fume**





AIR QUALITY: The plume of dust created by a mine blast at MTW last Wednesday near Putty Road.

NOTE: These articles and Facebook posts do NOT refer to Clermont Coal Mine

# GLENCORE



- Blasts are managed to reduce both the risk and possible impacts
- Key considerations:
  - Blast design & Product selection
  - Geology & Ground conditions
  - Blast Implementation and Changes
  - Preceding & Prevailing weather conditions
- Possible impacts considered before blast fired with "worst case" scenario adopted



# **Clermont Coal Mine approach**







- Absence of any NOx fume
- Zero incidents
- Fragmentation & Heave Profile suitable for excavating equipment
- Excavator productivity to match or exceed benchmark
- Equivalent blasting cost (\$/bcm)





- A blend of emulsion, ANFO and polystyrene beads
- Emulsion is a high density, low water content dual salt emulsion (1.48g/cc)
- Emulsion provides high waterresistance
- Polystyrene provides ability to alter product density without chemical gassing



GLENCC

Density range 0.9 to 1.2 g/cc

# **Trial Process**



GLENCO

- 5 Blasts in total; 2 benchmark blasts & 3 trial blasts
- Alternate blasts to ensure unbiased comparison
- Total product trial of 600 tonnes



# **Trial Process**



- Both benchmark blasts used the standard site blast design parameters & products
- > 1<sup>st</sup> Trial Blast adopted conservative approach:
  - 10% reduction in powder factor
- > 2<sup>nd</sup> Trial Blast same pattern as Benchmark:
  - 20% reduction in powder factor
- 3<sup>rd</sup> Trial Blast further reduction in powder factor to provide cost neutral comparison





#### **1**<sup>st</sup> Benchmark blast

- Loaded with 40% emulsion heavy ANFO
- Slept for up maximum of 48 hours
- Level 1 fume event observed

### 2<sup>nd</sup> Benchmark blast

- Loaded with gassed 70% emulsion blend
- Slept for 5 days
- Level 1 fume event observed





# All trial blasts loaded with XLOAD at density of 1.0 g/cc

# 1<sup>st</sup> Trial blast

- Slept for up to 3 days
- 2<sup>nd</sup> Trial blast
  - Slept for 16 days
- **3<sup>rd</sup> Trial blast** 
  - Slept for up to 5 days

**NO Fume observed for any trial blasts** 



# Results



Dig face comparison between Trial product and benchmark product





# Results



Instantaneous Dig Rates:

#### **Benchmark Blasts Vs Trial blasts**

(6% improvement in dig rate)





GLENCORE

#### **Velocity of Detonation – XLOAD 100**







- No fume observed from the three trial blasts
- 6 % increase in productivity from shovel for trial blasts over benchmark blasts
- No operational or environmental incidents
- Cost neutral against benchmark product





- The Management of Glencore and Clermont Coal Mine
- The Management of Hanwha Mining Services
- The Operational personnel from both Clermont Coal Mine and Hanwha in particular the site Drill & Blast Team





# **Controlling Blast Related Fume with Modified Explosives**



J. Rock – Technical Specialist, Hanwha Mining Services

K. Bambrook – Drill & Blast Engineer, Glencore Coal Assets Australia, Clermont Mine

