

WIRELESS ELECTRONIC BLASTING

November 8th, 2016 Steve Thomson

ISEE- 2016

CONTENTS

- Introduction
- Wireless communication mode
- System components & operations
- Design for a Safe System
- Lab & field testing
- Mining applications for Wireless Initiation

EVOLUTION OF INITIATING SYSTEMS

INTRODUCTION

 A world of convenience with wireless communication taken for granted

WIRELESS COMMUNICATION

- Wireless communication in Mining application.
 - Between the firing control point and a remote blast box near the pattern.
 - A wireless connection between the firing control point and a transceiver at the collar
 - Wireless communication from firing transmitter through rock to a receiver in each hole.

WIRELESS BENEFITS

- Through the rock wireless brings a wider suite of benefits
 - Saves time and effort priming the holes
 - No surface component in blast area
 - Eliminates opportunity for damaged leg wire
 - Improves access and eliminates potential hazards (Mine Traffic, snap slap and shoot event)
 - Enables new automated mining techniques
 - Removes complexity at charging

WIRELESS BENEFITS

• It is self evident that wireless brings speed and convenience.

The value however is in safety and mining cost.....

- Eliminates physical connections
- Saves time and the restrictions of surface hook up at blast times
- Eliminates need to re-enter a blast area.

TODAY'S COMPLEXITY

WIRELESS BLASTING

WIRELESS COMMUNICATION THROUGH ROCK

- How: Low frequency Magnetic Induction (MI) waves
- Current VLF comms widely used in underground PED *(personal emergency device)
- Large currents flowing through loop of conductor generate magnetic field.
- AC current generate oscillating fields in which we can carry data by modulating frequency or amplitude

*Difficulty is sending precise data like a firing code

MI-SIGNAL PENETRATION

Not affected by vegetation, earth barriers, or burial

Receivers

Not significantly affected by water

Transmitter

- Relatively inexpensive RX/TX, Low energy transmissions and less prone to interference
- Penetrates air, water, sediments and rock, bunkers, large urban structures and underground complexes. Across media boundaries. Current capabilities up to 1KM.
- Field strength not significantly attenuated in moderately conductive materials

SYSTEM COMPONENTS

- WEB system Rx side:
- Consumable receiver (DRX)
 - Plugin detonator
 - Booster

ASSEMBLY OF DETONATOR

Insert Plugin detonator via 4-pin terminal

Energized DRX (e-drx)

(2 of the terminals complete the battery circuit inside the unit)

ENCODING (PROGRAMMING TIMING AT LOW VOLTAGE – BUILT IN THE ELECTRONICS)

At the borehole at priming time, place unit in **Encoder** and program (Log)

Unit Receives from Encoder

- Delay time
- Group ID number (GID)

GID's are unique to a mine site

Communication between the Encoder and DRX is a isolated secure comms path.

ASSEMBLY – ENCODING - PRIMING

ACCESSORIES

Tether Lock Modular configuration

Tether lock at Booster end

Spider Modular configuration

SYSTEM COMPONENTS

- Transmission System:
- Blast controller hand held
- Transmitter
- Antenna
- Critical attribute of the signal detected in the borehole is the signal to noise ratio.
- Power lines & motors operating at 50-60 Hz.

SYSTEM COMPONENTS

- System component comprises:
- Handheld blast controller
- Transmitter (Signal generator)
- Power source (marine battery)
- Antennas (Quad & Ground Loop)

BLAST MANAGEMENT & FIRING

- A Blast is a defined "Group" of Primers:
- A group of primers is allocated a unique single use encrypted ID
- A series of GID's are allocated to a specific site
- GID's are allocated with a unique Code Management Computer
- USB Drive transfers blast data & authorisations between devices
- Successive GID's can be fired

DESIGN FOR A SAFE SYSTEM

LAB & FIELD TEST

- Formal verification and validation (V&V) methodology
 completed
- Formal fault injection program

- Test bench in virtual environment fired over 100,000 times without failure
- Completed over 20,000 lab test including a fault injection protocol

SIL 3 Certification

 Field Validations (DUMMY's) Field Evaluations (LIVE)

FIELD VALIDATION WITH DUMMY BOOSTERS

- Early field test with live detonator an dummy boosters
- Timing accuracy examined by monitoring shock tube flashes with high speed camera

FIELD TRIALS WITH LIVE EXPLOSIVES

Field Test	Summary
Quarries in Canada & Australia	8 blasts at 6 different quarries
Underground mines in Canada	3 blasts at 1 underground mine
Hole diameter	80 mm (3.5 inch) – 165 mm (6.5 inch)
Number of holes per blast	12 - 89
Antennas used	Quad loop x3, 40 m loop x8
Range from antenna to furthest hole	175 m (574 ft) – 875 m (2870 ft)
Total number of WEB primers used	1045

DRX next to a wet hole being loaded

FIELD TRIALS WITH LIVE EXPLOSIVES

Current Trial - Ernest Henry Mine

- Stage 1 Proof of Concept
 - Remove Operator from Drawpoint Brow
 - 30 Rings > 500 primers
 - Pre-charging out to 21 days
 - Process & Scalability
 - First Blast 1 November 2016
 - Production rings December Jan
- Stage 2 Mining Benefits
 - Blast performance
 - Optimisation

WIRELESS SITE SURVEYS

- 1. Magnetic noise, ore characteristics, etc,. in the real field environment does interfere with communications
- 2. System reliability is enabled by robust site survey

Blastometer for down hole survey

The Spectrum analyser showing a signal from the transmitter

LIMITATION OF ONE-WAY COMMUNICATION?

- Designed with One Way Communication
 - Cost
 - Signal Power Requirements
 - Band Width & protocol's

- Majority of faults in "wired" initiating systems:
 - Damaged lead wires
 - Problems with connectors
 - Current leakage from known or unknown sources
 - "Out of the box failures", identified at logging.
- Thus, two way comms useful where the physical connections are the main risk

MINING APPLICATIONS

- Wireless is not a direct substitute for conventional systems it will need to deliver Value to justify use.
- Applications
 - Sub Level Cave Mining
 - Drawbell/Pre Undercut Blasting & Preconditioning
 - Stranded Ore
 - Starter Detonator
 - Automation of Charging
- Wireless will be only be offered as a service to ensure safe and reliable use of the blasting technology, and ensure successful launch.

MINING APPLICATIONS - SLC

- Wireless blasting example in Sub-level caving:
 - Remove people from drawpoint brow No hook-up
 - Significantly reduce exposure people to hazardous areas
 - Improve drawpoint availability
 - Reduced re-drills due to lost brows and dislocation
 - Improved ore flow avoid misfires
 - Improved recovery

TRADITIONAL SUB-LEVEL CAVING

WIRELESS SUB-LEVEL CAVING

WIRELESS BLASTING -CHANGING THE WAY WE BLAST

© Orica Limited Group